DCS/CSCI 2350:
Social & Economic
Networks

How are networks formed in the
real world?
Modeling Networks

Mohammad T. Irfan




Reading

* Newman’s Networks, Ch 12 (Canvas)
e Erdos-Renyi random graphs

* Selected topics: Chapters 1, 4, 5 of Jackson’s
Social and Economic Networks book (Canvas)

* Watts-Strogatz and preferential attachment

e Optional: Chapters 3, 4 of Watts’s Six Degrees
book (for behind the scene)




Why model networks?

* How are networks formed?

e Effect of a network

* Targeted interventions



Hush puppies (1995)
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Watts-Strogatz Kleinberg’s
small-world models navigation models
: 1998 2000
Erdos-Renyi ( ) Barabasi-Albert ( )
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Why random
network models?




Why randomization?

* First attempt -> richer models

e Powerful!

* An ensemble of networks, not just one network
e Can capture real-world network properties

* Context-free
* Computationally tractable




Prelude

* Power-law degree distribution, p, = C k™

* (Puzzle 2)

Max possible # of edges = (’21) — nn—1)

2

n!
n—k)!

L (ny —
e Formula: k) = o




Erdos-Renyi ranc

om graphs

(or random graphs)

* Static
e Given n nodes (constant)

* Model 1

* Inputs: number of nodes
edge=p
e Each pair of nodes is con

* Model 2

* Inputs: number of nodes

n and probability of forming an

nected by an edge with prob. p

n and number of edges m

* Create m edges uniformly at random out of (g) total

possible edges



Properties of Erdos-Renyi graphs

* Every simple graph is possible!

* How can we say something regarding properties?

1. Estimate the probability of a property
2. Limiting behavior: n = infinity




Properties of Erdos-Renyi graphs

* Degree distribution
* Clustering coefficient
* Small-world effect

* Giant component




Degree distribution

* p = € ck/ k! [Poisson distribution]

* Here, mean degree ¢ = p(n-1)
|[AKA average deg. or expected deg. ]

n o




Derivation (optional)
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Approximate using the Maclaurin series: In (I-pp=—p-p2—-p3-—-...

discarding the latter terms to get In(1-p) = —p

and




Plotting Erdos-Renyi degree distribution

Poisson ¥
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Plotting Erdos-Renyi degree distribution

P& WolframAlphz * Plug in Poisson

distribution
plot exp(-2)*2*k/k! fork =0to 10 =

* Expected degree, c =2
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High-school relationships
(Bearman et al, 2004)
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Random graph with p =0.02




Frequency

Degree distribution: p = 0.02

oproximation by Poisson distribution
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High-school friendships
(Currarini et al, 2007)




Random graph with p = 0.08




Frequency

Degree distribution: p = 0.08
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Erdos-Renyi:
Glant component

g




Phase transition & giant comp (GC)

Let g fraction of nodes be in the GC:
Fraction of nodes outside of the GC = 1-q
Prob of finding a node outside of the GC irrespective
of its degree = right hand side below




Phase transition
& giant comp.
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P h ase transition plot [q, 1-exp(-0.5*q), 1-exp(-1*q), 1-exp(-1.5*q)], q=0 to 1

& giant comp. = o @ % WolframAlpha.com
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Glant component:
Netlogo experiments

1. Prof. Irfan’s program:
https://mtirfan.com/Erdos-Renyi.html

2. Netlogo -> Models Library ->
Networks -> Giant Component



https://mtirfan.com/Erdos-Renyi.html
https://mtirfan.com/Erdos-Renyi.html
https://mtirfan.com/Erdos-Renyi.html

Erdos-Renyi:
Clustering coefficient

?




Erdos-Renyi:
Small-world property

g




Properties of Erdos-Renyi graphs

* Degree distribution
* Giant component

* Clustering coefficient

 Small-world effect




Watts-Strogatz Kleinberg’s
small-world models navigation models
: 1998 2000
Erdos-Renyi ( ) Barabasi-Albert ( )
Random graphs Preferential-attachment
o) QR (1999)
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Watts-Strogatz small
worlds model




Question

How to create random graphs that capture the
real-world clustering properties?

Watts-Strogatz small worlds model




Inspiration: Isaac Asimov

Edges within each cave Solaria: random edges

ASIMOV

5.5 E ROBOT SERIES

THE NAKED SUN

OF STEEL




For this simple model, one surprising result is that on
average, the first five random rewirings reduce the average path length
of the network by one-half, regardless of the size of the network.

Duncan Watts, Six Degrees, pg. 89



For this simple model, one surprising result is that on
average, the first five random rewirings reduce the average path length
of the network by one-half, regardless of the size of the network. The big-
ger the network, the greater the effect of each individual random link so
the impact of adding links becomes effectively independent of size. The
law of diminishing returns, however, is just as striking. A further 50
percent reduction (so that now the average path length is at one-fourth
of its original value) requires roughly another fifty links—roughly ten

times as many as for the first reduction and for only half as much over-

Duncan Watts, Six Degrees, pg. 89



Watts-Strogatz small-world model
(1998)

* Degree distribution ?

* Clustering coefficient

* Giant component

 Small-world effect




Barabasi-Albert
oreferential
attachment model




Question

How to create random graphs that capture the
real-world degree-distribution?

Barabasi-Albert preferential attachment model




Examples

* Pareto (1890s)
* Wealth distribution, city sizes

* Herbert Simon (1955):

e System grows over time with new objects entering
 Existing objects grow proportional to their size
* “The rich gets richer faster than the poor”

* Derek Price (1965)

 Citation network: # of citations of a paper is
proportional to the # of citations it has




Barabasi-Albert Preferential-attachment model (1999)

* Nodes are born over time (only one node at
atime). DOB: {0, 1, 2, ..., t, ...}

* Degree of node i at time t: di(t)

* Upon birth, a node forms M edges with
existing nodes with prob proportional to
the existing nodes’ degrees

r N
M is the only model

parameter!




Preferential attachment

Degree distribution is power law!

(derivation)




Barabasi-Albert Preferential-
attachment model (1999)

)

* Clustering coefficient ?

* Degree distribution

* Giant component

 Small-world effect




